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ABSTRACT 

A probability-based analysis method for 
predicting buckling loads of compression-loaded 
laminated-composite shells is presented, and its 
potential as a basis for a new shell-stability 
design criterion is demonstrated and discussed. 
In particular, a database containing information 
about specimen geometry, material properties, 
and measured initial geometric imperfections for 
a selected group of laminated-composite 
cylindrical shells is used to calculate new 
buck I i n g -I oad “ knockdown factors . ” T h ese 
knockdown factors are shown to be substantially 
improved, and hence much less conservative 
than the corresponding deterministic knockdown 
factors that are presently used by industry. The 
probability integral associated with the analysis 
is evaluated by using two methods; that is, by 
using the exact Monte Carlo method and by 
using an approximate First-Order Second- 
Moment method. A comparison of the results 
from these two methods indicates that the First- 
Order Second-Moment method yields results 
that are conservative for the shells considered. 
Furthermore, the results show that the improved, 
reliability-based “knockdown” factor presented 
always yields a safe estimate of the buckling 
load for the shells examined. 
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INTRODUCTION 

The difficulty in predicting the behavior of 
compression-loaded thin-walled cylindrical shells 
continues to concern design engineers. Thanks 
to extensive research programs conducted in the 
late sixties and early seventies of the past 
century and the contributions of many eminent 
scientists, it is now known that buckling strength 
can be affected significantly by the uncertainties 
in the definition of loads, material properties, 
geometric variables, edge support conditions, 
engineering models, and the accuracy of the 
analysis tools used in the design phase. 

Presently, the NASA design criteria monographs, 
e.g. NASA SP-8007’, from the late 1960’s are 
used, to a wide extent, in industry to design 
buckling-critical shells. The data in these 
monographs account for design uncertainties by 
using a “lump-sum” safety factor that is 
determined from experimental data. This safety 
factor is often referred to by designers as the 
“empirical knockdown factor y .” Structural 
design verification is achieved by applying the 
worst-case loading to the structure and testing to 
failure. However, it has been found that using 
this approach to design buckling-critical shells 
often leads to overly conservative designs. The 
reason for this deficiency is primarily due to the 
fact that the empirical knockdown factor is based 
on a lower-bound design curve derived from a 
large amount of experimental data for which the 
test pedigree and other things like initial 
geometric imperfections and boundary 
conditions are not well defined. In addition, 
these knockdown factors do not include 
information for shell structures made from 
advanced composite materials. Thus, new, 
improved knockdown factor are expected to yield 
significant weight savings and improved 
performance in the design of buckling-critical 
shells. Further, the new knockdown factors 
presented herein will, for the first time, provide 
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design information for compression-loaded 
composite laminated shells. One approach that 
appears to have potential for realizing these 
improvements is a reliability-based approach. 

Following the pioneering work of Freudenthal* on 
structural safety and reliability, around 1970, the 
use of probabilistic methods to assess the safety 
of structures was p r o p o ~ e d . ~ , ~  Recent papers, 
e.g. Refs. 5-7, have proposed a new reliability- 
based design procedure for buckling-critical 
isotropic shells. However, similar results for 
compression-loaded laminated composite shells 
do not exist in the literature. 

The focus of the present paper is on the 
extension of the probabilistic approach to 
buckling of compression-loaded laminated 
composite shells. In particular, the goal is to 
formulate a new and improved scientific 
knockdown factor that is based on statistical 
information obtained from measurements made 
on families of composite shells. As a minimum, 
the measurements include initial geometric 
imperfections, but can also include other critical 
details such as shell-wall thickness variations, 
material property variations, non-uniform load 
introduction, and boundary condition effects. 
With this approach, it is believed that a 
scientific, reliability-based knockdown factor will 
result in a better engineered, better designed, 
and safer structure by quantifying, and supplying 
understanding of, problem uncertainties such as 
initial imperfections and their interaction with the 
design variables. 

Thus, the objective of the present paper is to 
demonstrate a reliability-based buckling-analysis 
approach that can be used as the basis of a new 
preliminary design criterion for buckling-critical 
shells, particularly, for shells made of advanced 
laminated-composite materials. To accomplish 
this objective, a probability-based analysis 
method for buckling of compression-loaded 
cylindrical shells is presented first. In this 
method, a database that contains information 
about test specimen geometry, material 
properties, and measured initial imperfections for 
a selected group of laminated-composite 
cylindrical shells is used to calculate reliability- 
based buckling-load knockdown factors. In 
addition, the probability integral associated with 
the analysis is evaluated by using an 
approximate, less computationally intensive, 

First-Order Second-Moment (FOSM) method, 
and these results are compared to 
corresponding results obtained by using the 
exact, computationally intensive Monte Carlo 
method. Then, the results of the reliability-based 
analysis are compared with results based on 
NASA design guidelines for buckling of 
compression-loaded isotropic cylindrical shells. 

RELIABILITY-BASED BUCKLING ANALYSIS 

The buckling problem for axially compressed 
cylinders can best be formulated in terms of a 
response (or limit state) function such as 

where A is a suitable normalized loading 
parameter (e.g., A =Pl e), As is the random 
collapse load of the shell, and the vector x 
represents the random variables of the problem. 
The components of the random vector, Xi, may 
be Fourier coefficients of the initial geometric 
imperfections and other parameters that quantify 
the uncertainties in the specified boundary 
conditions, the constitutive equation used to 
describe the nonlinear material behavior, the 
shell-wall thickness distribution, residual 
stresses, etc. Notice that the evaluation of the 
response function generally involves the solution 
of a complicated nonlinear structural analysis 
problem that typically requires a detailed, and 
possibly large, finite-element model. However, 
with today’s computational resources, a complex 
nonlinear analysis in itself does not pose any 
insurmountable difficulties. The response 
function g(m = 0 separates the variable space 
into a “safe region,” where Q(a >O, and a 
“failure region,” where Q(a I O .  The reliability 
f i n )  is calculated from the probability of failure 
p,(4 by 

where 

and &(F) is the joint probability density function 
of the random variables involved. The credibility 
of this approach depends on two factors; the 
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accuracy of the mechanical model used to 
calculate the limit state function and the 
accuracy of the probabilistic techniques used to 
evaluate the multi-dimensional probability 
in teg rat. 

The First-Order Second-Moment (FOSM) 
Method is an approximate method for evaluating 
multi-dimensional probability integrals that is not 
as computationally demanding as exact methods 
such as the Monte Carlo method. The FOSM 
method involves linearizing the response 
function such that g(% = ,?'(a at the mean point 
and requires knowledge of the distribution of the 
random vector 2. By assuming that both ,?'(a 
and 2 are normally distributed, then 

@A)=l-Prob(ZsO) 
0 

=1- f,(f)df - 
(4) 

where the probability density function f,(p) is 
given by 

and a= 44, oz =Jz. It has been shown 
in earlier works (e.g. Refs. 5 and 6) that with this 
approach, the solution of the reliability-based 
buckling problem defined by Eq. (3) can be 
reduced to a series of n+l deterministic 
buckling-load calculations, where n is the 
number of random variables used. 

amplitudes, respectively; and the axial and 
circumferential wave numbers i, k;ande are 
integers. 

From the work of Koiter* and Budiansky and 
Hutch insong,  it is known that the worst 
imperfection shapes (the ones that give the 
biggest decrease in the buckling load for a given 
amplitude) are those which are similar to the 
critical bifurcation buckling mode-shapes. Thus, 
predicted bifurcation buckling mode shapes are 
used in the present analysis to form a worst-case 
imperfection shape. In order to apply the First- 
Order Second-Moment method, the amplitudes 
of the axisymmetric and asymmetric components 
in the imperfection model given in Eq. (6) are set 
equal to the root-mean-square values of the 
corresponding measured initial imperfections. 
The initial imperfection is modeled using the 
following alternate double Fourier representation 

X 
W ( X ,  y) = f ~ & C O S r j Z ~  4 

i=l /7\ 

+ t ~ ,  n1 y, n2 s i n k $  cklcos e 7 X + D,,sin - Y )  
R 

k=l c=2 

Then, by definition, the root-mean-square value 
of the measured initial imperfection is 

Thus. 
NUMERICAL RESULTS 

To include the effects of initial geometric 
imperfections in the analytical model in a simple 
manner, for the purpose of demonstrating the 
reliability-based approach, the following two- 
mode initial imperfection model that consists of 
an axisymmetric and an asymmetric component 
was employed: 

w -  x -  X Y  - = t1 c o s h  - + t2 s i n h  - cos e - 
f L L R ~ ~ 

where is the out-plane imperfection; R, L ,  
and t denote the shell radius, length, and 
thickness respectively; 6 and c2 are the 
axisymmetric and asymmetric imperfection 

= A:xi + A,2 

The measured initial shape of one of the 
composite shells used (AWCYL-11-1) is shown 
in Fig. 1. As can be seen, the initial imperfections 
are dominated by the !=2 mode, which 
represents an ovalization of the cylinder. 
However, the eigenvalue from a linear bifurcation 
analysis corresponding to the asymmetric mode 
( k =  l, !=2) is equal to 4.106, which is about 10 
times bigger than the lowest eigenvalue 
A, =0.398. Based on this fact, it was decided to 
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neglect the contribution of the ovalization (the 
C = 2) mode when calculating the root-mean- 
square values of the measured initial 
imperfections. Otherwise, the resulting numerical 
model used for the buckling load calculations will 
predict unrealistically low buckling loads because 
the amplitude of the imperfection would be 
artificially inflated due to the large magnitude of 
the ovalization (the e =  2) mode. 

- 
In this paper, the values =-Aaxi and 52 = AasV 
denote the axisymmetric and asymmetric 
imperfection amplitudes, respectively. A listing of 
the imperfection amplitudes obtained for nine 
composite laminated shells fabricated and tested 
at NASA Langley Research Center are given in 
Table 1. The buckling load calculations were 
carried out with the code TWOMOD”. This code 
is based on a Galerkin-type solution of the 
nonlinear Donnell-type equations for imperfect 
anisotropic cylinders. The theoretical buckling 
load is defined as the value of the 
nondimensional loading parameter A = P /  P, at 
the limit point of the prebuckling state. For the 
statistical calculations, the data associated with 
laminated composite shells are used. A listing of 
the geometric and material properties of the nine 
NASA shells tested is given in Table 2. Typical 
results of the data reduction for the measured 
initial imperfections of theses shells are 
tabulated in Refs. 11 and 12. The mean values 
and the variance-covariance matrices of the 
random variables Xi were evaluated by using 
the following ensemble averages for a sample of 
the experimentally measured initial imperfections 

yielding 

€(XI) =-0.00334 
€(A’,) = -0.0498 

cov(X1, X,) = 

3 0.0000108 -0.000101 
-0.000101 0.00121 

For the buckling load calculations, the shell 
AWCYL-11-1 was used. The imperfection model 
of Eq. (6) was specialized to the most critical 
long-wave imperfection combination with the 
axisymmetric mode i = 2  and the asymmetric 
mode k=l and t = 6 .  In particular, the strong 
coupling condition i = 2 k  is enforced for this set 
of imperfection mode-shapes. This condition for 
strong coupling between an asymmetric and an 
axisymmetric imperfection shape was first 
identified by Koiter and has been shown to 
cause a significant reduction in the buckling load 
of a compression-loaded cylinder. The 
corresponding eigenvalues are A, = 5.1 50 and 
A,, =0.401. In the probabilistic analysis, it is 
convenient to re-normalize these eigenvalues so 
that the critical (the lowest) re-normalized 
eigenvalue is equal to 1 .O. Thus, 

pci = a ’ 
-12.932 - 

0.398 
and 

Ackt p,& =-=1.007 
0.398 

In order to apply the First-Order, Second- 
Moment (FOSM) Method, the mean buckling 
load has to be calculated first. Using the 
imperfection model of Eq. (6), with the mean 
values given in Eq. (12), yields €(A,) = 0.896. 

Thus, 

where p is the re-normalized load parameter 
defined as 

A p=- 
A7 

and AT = 0.398 is the critical (lowest) normalized 
buckling load of shell AWCYL-11-1 used for the 
numerical calculations. The variance Z is given 
by 

var(Z) = var(A,) 

The calculation of the derivatives SA,/&, is 
performed numerically by using the following 
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numerical differential formulas evaluated, at 
values of Si = €(Xi) : 

For the increment of the random variable, 1% of 
the original mean value of the corresponding 
equivalent Fourier coefficient is used, so that 
Ati = 0.01 €(Xi). The calculated derivatives are 

all, = 0.748 and = -1.362 (19) 
a51 252 

Next, using the sample variance-covariance 
matrix of Eq. (13), the variance of Z is calculated 
as 

var(r) = 0.00246 (20) 

Hence, the reliability index p is 

Finally, the reliability is calculated directly from 
Eq. (4); that is, 

f l P )  = l -P , (p )  = 

where @(p) is the standard normal probability 
distribution function. This result is plotted in Fig. 
2. Notice that for a reliability of 0.99999, one 
obtains an improved, re-normalized “knockdown” 
factor of p a = A a / A T =  A,/O.398=0.68. 
Results from the FOSM are compared to similar 
results obtained from a Monte Carlo method in 
Fig. 2. The Monte Carlo method is based on 
5000 realizations or sample points as compared 
to the three analyses required to perform the 
FOSM method. These results indicate that the 
results obtained from the simplified FOSM 
method are conservative in the high reliability 
region the reliability curve, e.g., f l p )  greater 
than 0.4. 

A comparison of the improved, scientific 
knockdown factor pa, the traditional empirical 

knockdown factor y for isotropic shells, and the 
corresponding experimental buckling loads eXp 
is presented in Table 3. As can be seen from 
the results, the reliability-based improved 
“knockdown” factor pa always yields a safe 
estimate of the load-carrying capacity of the 
shells tested if failure is caused by elastic 
instability. In addition, the results indicate that 
the new knockdown factors can be much less 
conservative than the corresponding traditional 
empirical knockdown factors for these shells 
based on the NASA design monograph for 
isotropic shells. For example, The traditional 
design approach for shell AWCYL-1-1 predicts a 
buckling load 36% lower than the experimentally 
measured buckling load. In contrast, the new 
probability-based knockdown factor predicts a 
buckling load that is only 7% less than the 
experimental buckling load. 

CONCLUDING REMARKS 

A probability-based analysis method for 
predicting buckling loads of compression-loaded 
composite cylinders has been presented. It has 
been demonstrated that a database containing 
information about the specimen geometry and 
material properties and measured initial 
imperfections for a group of specimens can be 
used successfully to calculate improved, less 
conservative, buckling load “knockdown factors,” 
as compared to the lower-bound knockdown 
factors currently used in industry design practice. 
A First-Order Second-Moment (FOSM) method 
and a Monte Carlo method were both used to 
evaluate the probability integral and a 
comparison of the results from both methods 
indicated that the FOSM method can be 
conservative for high values of reliability. 
Furthermore, the results show that the reliability- 
based “knockdown” factor pa always yields a 
safe estimate of the buckling load of the cylinder 
specimens if failure is caused by elastic 
instability. 

The probability-based analysis procedure 
presented in this study can be used to form the 
basis for a shell analysis and design approach 
that includes the effects of initial geometric 
imperfections on the buckling load of the shell. 
In particular, a probability-based analysis 
procedure can address some of the critical shell- 
buckling design criteria and design 
considerations for stability-critical shell structures 
without resorting to the traditional empirical shell 
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design approach that generally leads to overly 
conservative designs. 

It is anticipated that, for applications where the 
total weight of the structure is one of the critical 
parameters (e.g., aerospace structures), there 
will be a chance for definite improvement in the 
design process with the use of a new 
probabilistic design procedure. It is felt that the 
small added effort involved in systematically 
carrying out the required initial imperfection 
surveys will be fully justified by the overall cost- 
savings and by producing improved, less 
conservative and more reliable shell structures. 
However, in order to develop a validated 
probabilistic design procedure for buckling- 
sensitive structures, there is a need for additional 
systematic combined experimental and analytical 
or numerical results. Only then can the benefits 
be reaped from the many years of concentrated 
shell buckling research of the late 1960’s and 
early 1970’s. It is the authors’ opinion that the 
technology now exists for such an undertaking. 
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Table 1. Values of root-mean-square imperfection amplitudes. 

AWCY L-1 -1 

AWCY L-2-1 

AWCY L-3-1 

51 = f 2  =Aasy 

-0.27460.1 0-3 0.1 5395.1 0-' 

-0.33E147.10-~ 0.68915.10-' 

-0.23708.10-2 0.30062.10-' 

I AWCYL-4-1 I -0.40151.10-2 I 0.37061.10-' I 

AWCY L-92-02 

AWCYL-92-03 

I AWCYL-5-1 I -0.28099.10-, I 0.32179.10-' I 

-0.1 1 554 . lo-' 
-0.89050.10-3 0.58660.10-' 

0.13259 

I AWCYL-11-1 I -O.22241.1OW2 I 0.34885.10-' I 
I AWCYL-92-01 I -0.25832.10-2 I 0.38190.10-' I 

Table 2. Geometric and material properties of the NASA composite shells.' 

AWCYL-1-1 

AWCYL-2-1 

AWCYL-3-1 

AWCYL-4-1 

AWCY L-5- 1 

AWCYL-11-1 

AWCY L-92-0 1 

AWCY L-92-02 

AWCY L-92-03 

[ k4S I O  I 901, 

[ k45 / T45I2, 

[ k4S I O  I 90]2s 

[ f45 / 0, I M5], 

[M5 I 90, / T45], 

[ +45 / 0 / 9012, 

[k45 / O,], 

[*45 / 902], 

[ f45 I 0 I 901, 

For all shells: L = 14.0 in 

R[in] 

7.999 

8.009 

8.004 

7.994 

8.007 

8.0 

8.0 

8.0 

8.0 

t[in] 

0.0399 

0.0797 

0.0793 

0.0768 

0.0795 

0.08 

0.04 

0.04 

0.04 

$4 [in1 

0.00499 

0.00497 

0.00495 

0.00480 

0.00496 

0.005 

0.005 

0.005 

0.005 

E,,[/bI If?] 
18.511~106 

18.578.1 O6 

18.671. I O 6  

19.259.1 O6 

18.615. I O 6  
6 

18.5. IO6 
6 

6 

18.5. 10 

18.5. 10 

18.5. 10 

6 2  [/b I I/?] 
6 

6 

6 

6 

6 

6 

6 

6 

6 

1.64.10 

1.64 ' I O  

1.64.10 

1.64.10 

1.64. I O  

1.64. 10 

1.64. I O  

1.64. I O  

1.64. IO 

G,,[/bl if?] 
0.871 ' 1  O6 

0.874. I O 6  

0.878'1 O6 

0.906'1 O6 

0.875. I O 6  
6 

0.87. IO6 
6 

6 

0.87. 10 

0.87. 10 

0.87. I O  

"1 2 

0.300 

0.300 

0.301 

0.299 

0.300 

0.3 

0.3 

0.3 

0.3 
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I ame 5. I neorericai ana experimenrai DucKiing ioaas OT axiaiiy cornpressea composite sneiis. 

AWCYL-1-1 

AWCYL-2-1 

AWCY L-3- I 

AWCYL-4-1 

AWCYL-5-1 

AWCYL-11-1 

AWCY L-92-1 

AWCY L-92-2 

AWCY L-92-3 

Nc, [Ib/in] 

-2238.3 

-8910.1 

-8878.7 

-8599.1 

-8892.8 

-8957.4 

-2239.3 

-2239.3 

-2360.4 

premature material failure 

0.3660 

0.2225 

0.3980 

0.3186 

0.3397 

0.3983 

0.2659 

0.291 9 

0.3561 

Y 

0.471 

0.580 

0.579 

0.575 

0.580 

0.581 

0.471 

0.471 

0.471 

Pa 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

-1 9393 

-57875 

-1 02905 

-791 23 

-881 54 

-1 041 82 

-1 4096 

-1 5476 

-1 9901 

Pap, [Ibl 

-27999 

-67853 

-1 20856 

-93572 

-1 03353 

-1 21 934 

-20351 

-22343 

-28731 

Fig. 1 Measured initial shape of a [&45 / 0 / 90]2s graphite-epoxy shell [9] 
(Radius: 203.2 mm, length: 355.6 mm, wall-thickness: 2.032 mm). 

-301 64 

-73975 

-147759 

-1 25542 

-91 662* 

-1 52 I 00 

-27788 

-3 1 924 

-341 80 
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Reliability f u n c t i o n  f o r  g r o u p  of 9 NASA c o m p o s i t e  shells 

Wbor/h - - X  1 *cos(Z*pi*x/L) + X2-~in(p i *x /L) -cos(6sy/R)  
M o m t r  Carlo SO00 - - - -  FOSM 

0 
9 
L 

4 
0 

h 

0 
f 
": 
c o  

" 

Y 

0 
C 
3 

A 0  

c 

.g ? .; 0 

!! 
0 - 

0 

0 

Pa -7 
0 \ 
o 
0.00 0.20 0.40 0.80 

re-normal irsd  a x i a l  load rho - lombdo / 0.395260 

Fig. 2 Reliability of the group of nine composite shells [9] calculated 
using Koiter's modified 2-mode imperfection model. 
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